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ABSTRACT 

Energy storage is very limited in AUV's. To assist with energy management, data 

gathering missions have been proposed where the vehicle should sit on the bottom and gather 

acoustic/video/chemical data over extended periods of time. In this grounding senario while 

thrusters may be used, they are less desirable because of their high energy consuption and 

restricted use close to the ocean floor. The purpose of this work is to study a low cost, simple soft 

grounding capability for a submersible vehicle using controllable ballast. The ballast system 

based on the NPS Phoenix AUV is designed to control weight addition into or out of two ballast 

tanks. The developed control law adjusts the pump flow rate keeping the pitch angle and depth 

rate within the limits. Results for a soft grounding operation have been obtained using simulation. 
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I. INTRODUCTION 

A. INTRODUCTION 

Energy storage is very limited in AUV's. To assist with energy management, data gathering 

missions have been proposed where the vehicle should sit on the bottom and gather 

acoustic/video/chemical data over extended periods of time. In this grounding senario, thrusters 

may be used. However, there are two disadvantages for this method: high energy consumption and 

restricted use close to the ocean bottom. The motivation for this thesis is to study a low cost, simple 

soft grounding capability for a submersible vehicle using controllable ballast. For simplicity, water 

ballast is considered. The design of the control system is based on the NPS Phoenix AUV. The 

ballast system is designed to control the weight addition into or out of the two ballast tanks where 

instead of a bang-bang or a fuzzy logic controller which actually turns on and turns off the pumps , 

the developed control law controls the pump flow rate, keep the pitch angle and depth rate within 

limits. 

B. BACKGROUND 

Ballast control of vehicles is not a new subject and we can find many examples beginning 

in the 1900's, the non-rigid airships are very good examples of ballast control. One of the most 

important elements of a non-rigid airship is the ballonet-system. A ballonet as seen in Figure 1-1 is 

an airbag (one or two of them) inside the envelope, which is provided with air from a blower or 

directly from the engine unit. The air could be removed from the ballonet through the valves. If the 

airship has a front and aft ballonet then the height of the airship can be steered. For example, if the 

aft ballonet is filled with more air, then the airship will become heavier in the rear part of the 

envelope and the ship will incline increasing the altitude of the ship by using the engines. As Figure 

1-2 depicted, the airship can also be trimed through a front and aft ballonet [Ref. 1]. 



For most of the maneuvering underwater vehicles, the depth control is normally provided 

by hydroplanes. As an example, consider the NPS Phoenix AUV. It has two sets of control 

surfaces, namely the bow and the stern planes. At low speed, the control surfaces cannot provide 

enough control authority and the ballast control problem is very complex due to nonlinear, time- 

varying, uncertain hydrodynamics. There are some designs that used bang-bang control system 

[Ref. 2]. The ARPA's Unmanned Undersea Vehicle (UUV) employs a fuzzy logic ballast 

controller which is comparable with the performance that can be obtained from standard control 

techniques, but does not require traditional linear or nonlinear design methods. 

Figure 1-1. Sectional elevation of the Parseval-Airship "PL VI", 1910. 
(Marked areas are the ballonets inside the envelope) From [Ref. 1] 

■■■^m 

#" 

Figure 1-2. Elevator controling via front and aft ballonet, (newer type). 
From [Ref. 1] 



In another fuzzy logic control model, a 15 state Kaiman filter was developed to provide 

estimates of the motion variables and the applied lift and torque acting on the UUV. The control 

law decides between three possible control actions; pump water in both tanks, pump water out of 

both tanks and turn both pumps off. The fuzzy input state space is composed of depth error and 

depth rate, and each is divided into partitions. The fuzzy controller interpolates between the 

partitions allowing the control to vary smoothly as the states move from one partition to another. 

These movements of states were provided by on and off of ballast pumps [Ref. 3]. 

C. THESIS MOTIVATION AND GOALS 

The thesis will outline the development of a depth controller using sliding mode control 

techniques for a neutrally buoyant vehicle. The sliding mode controller is designed on the basis of 

the simplified four degrees of freedom vertical plane equations of motion. 

A linear quadratic regulator (LQR) proportional approach is then utilized for the design of 

the ballast controller, which produces flow rate commands, allowing the vehicle to have a soft 

grounding behavior. 

These two controllers used a logic based depth regulator to provide realistic simulation of 

the vehicle's flight and grounding capabilities for a single mission. 

D. THESIS ORGANIZATION 

In Chapter II, the equations of motion in six degrees of fredom are reviewed simplified for 

vertical plane case [Ref. 4], which provides the basis for the depth control design. Chapter III 

discusses the design of a flight controller with sliding mode techniques, and the development of the 

grounding controller using different methods of ballast control. Chapter IV outlines the methods 

and functions used for the simulating the designed systems. Chapter V discusses the results of the 

simulation studies which were conducted by using parameters of NPS Phoenix AUV The 

hardware components like sensors, pumps, and tanks needed for ballast control explained in 

Chapter VI. The conclusions and recommendations can be found in Chapter VII. 





II. VEHICLE MODELING AND EQUATIONS OF MOTION 

A. INTRODUCTION 

For simulation of maneuvering and motion control of the vehicle, it is assumed that 

[Ref.4] : 

1. The vehicle behaves as a rigid body 

2. The earth's rotation is neglected as far as acceleration components of the 

vehicle's center of mass is concerned. 

3. The primary forces that act on the vehicle have inertial, gravitational origins and 

hydrostatic, propulsion, thruster, and hydrodynamic forces from lift and drag. 

B. DEVELOPMENT  OF  THE  SIX  DEGREES  OF  FREEDOM  NON-LINEAR 

EQUATIONS OF MOTION FOR A MARINE VEHICLE 

The following work concerned with development of the six degrees of freedom non- 

linear equations of motion for a marine vehicle includes the equations described by Healey [Ref. 

4]. A vector x of vehicle body frame velocities and a vector z of global positions was defined 

as: 

x = 

u 

v 

w 

P 

q 
r 

and z = 

X 

Y 

Z 

0 

(2.1) 

then considering M as a 6 x 6 mass matrix including translational and rotational inertial elements, 

the equations of motion can be written in the following vector form, 

Mx+/(x)+Fg(z) = Fh (2.2) 

and, 



z + g(x,z) = 0 (2.3) 

With suitable knowledge of the excitation force and moment loads, a solution for the 

vehicle's dynamics can be obtained. A more detailed insight into the development of these 

differential equations, in first order form given by the foregoing analysis shows, 

m{v + w x pG} + m(w x w x pG + w x v)+/G(z)= 

and, 

I0w + m{pG x v} + w x (I0w) + m{pG x w x v} + mg (z) = 

It helps here to define the cross product coefficient matrix so that, 

w xpG = -pG x w = -[cros(pG)]w 

where, 

Zf 

Mf 

N, 

(2.4) 

(2.5) 

(2.6) 

[cros(pG)] = -zf 0 

x, 0 

(2.7) 

The next step is to collect all inertial terms into a 6 x 6 mass matrix including the inertia 

cross coupling effects, 

M = 

m 

m 0    0" 0 zG     - yG" 
0 m    0 m -zG 

0        xG 

0 0    m .ye -xG       0 

0 -zG   yG " I» *~xy         xz 

zG 
0      -xG iy* lyy             lyz 

— i 
^G xG 

0 L1- Jzy     I«J 

(2.8) 

The remaining terms on the left hand side arising from centripetal and coriolis accelerations 

become, 



/(*)= 
m(w. x w x .pG + w x .v) 

w x .(I0w) + m{pG x w x .v} 
(2.9) 

The double vector cross products are nonlinear in the primary velocity variables and 

hence the need for the nonlinear functional, f(»). The reader can perform the indicated 

manipulations to express individual equations within the set.lt may also help if the screw symetric 

matrix S(«) is used in place of the vector cross product [Ref. 5] .This yields, 

/(*)= 
m(S(w).S(w).pG+S(w).v 

S(w).(I0w) + m{S(pG)S(w).v}_ 
(2.10) 

The screw symetric matrix involving the vector cross product of © with other vector is 

S(Q>) = 

0 -r +q" 
r 0 -p 

-q P 0 

(2.11) 

The components of the sum of all external forces and moments acting on the vehicle 

body are separated in the above analysis into six components each acting along the vehicle body 

fixed coordinate axes and form the total vector of forces and moments as 

F(t)=[XXt),YXt),ZKt),KXt),MXt),NXt)]'    . (2.12) 

where the vector components in order refer to the surge, sway, heave forces, and the roll, pitch, 

and yaw moments respectively.The expressions for X/ etc. are found as the sum of all external 

forces acting on the vehicle. 

In the component form, these external forces can be defined as follows, 

where 

m[ü + qw-ru-xG(q2+r2) + yG(pq-f) + zG(pr + q)] = X 

m[ü + ru-pw-yG(r2+p2) + zG(qr-p) + xG(qp + f)] = Y 

m[w + pu-qu-zG(p2+q2) + xG(rp-q) + yG(rq + p)] = Z 

F = Xi + Yj + Zk 

7 

(2.13) 

(2.14) 



If I is the mass matrix of inertia of the body, in component form, 

H = Hxi+Hyj + Hzk (2.15) 

and, 

Hx=Ixp-Ixyq-I„r 

Hy=-I
yxP+iyq-V <216> 

H^-I^p-I^q + Izr 

If the external moment, M, is denoted as, 

M = Ki+Mj + Nk (2.17) 

and in component form, 

Ixp + (Iz-Iy)qr + Ixy(pr-q)-Iyz(q2-r2)-Ixz(pq + r) 

+ m[yG(w-uq + op)-zG(ö + ur-wp)] = K , (2.18) 

Iyq + (Ix-Iz)pr + Ixy(qr + p) + Iyz(pq-f) + IX2(p2-r2) 

-m[xG(w-uq + up)-zG(ü-ur + wq)] = M , (2.19) 

Izr + (Iy-Ix)pq-Ixy(p2-q2)-Iy2(pr + q) + Ixz(qr-p) 

+ m[xG (0 + ur - wp) - yG (Ü - ur + wq)] = N (2.20) 

where, 

Ix : vehicle mass moment of inertia around the x-axis 

(K,M,N) : roll, pitch, and yaw moments, respectively 

(p,q,r)      : roll, pitch, and yaw rates, respectively 

(u, u, w)  : surge, sway, and heave velocities, respectively 

x : body fixed axis, positive forward 

XG : longitutional position of center of gravity 

(X,Y,Z)    : surge, sway, and heave forces, respectively 

8 



i 

y : body fixed axis, positive starboard 

yG : athwartship location of center of gravity 

z : body fixed axis, positive down 

zG : vertical position of center of gravity 

(((>, 0, \\i)  : roll, pitch, and yaw Euler angles, respectively 

These equations are the three rotational equations of motion, and together with the •   g 

translational equations, are the six degrees of freedom equations of motion of a rigid body 

expressed in a coordinate system moving with the body, fixed at the body's geometric center 

[Ref. 4]. 

C.        EXTERNAL FORCES AND MOMENTS 

The right-hand sides of Equations 2-13 and 2-20 may be expanded to include the sum of 

individual component forces and moments arising from hydrostatic and hydrodynamic sources 

and external forces arising from control surface deflections and propeller thrust [Ref 6]. These 

equations are expressed as follows: 

m[u-ur + wq-xG(q2+r2) + yG(pq-f) + zG(pr + q)] = XH+Xw+Xc 

m[0 + ur-wq + xG(pq + f)-yG(p2+r2) + zG(qr-p)] = YH+Yw+Yc       (2.21) 

m[w-uq + up + xG(pr-q) + yG(qr + p)-zG(p2+q2)] = ZH+Zw+Zc 

Ixp + (Iz-Iy)qr + Ixy(pr-q)-Iyz(q2-r2)-Ixz(pq + r) (2.22) 

+ m[yG(w-uq + up)-zG(ü + ur-wp)] = KH+Kw+Kc 

Iyq + (Ix-Iz)pr-Ixy(qr + p)-Iyz(pq-f)-Ixz(p2-r2) (2.23) 

+ m[xG(w-uq + up)-zG(ü-or + wq)] = MH +MW +MC 

Izr + (Iy-Ix)pq-Ixy(p2-q2)-Iyz(pr + q) + Ixz(qr-p) (2.24) 

+ m[xG(ü + ur-wp)-yG(ü-ur-wq)] = NH +NW +NC 



Hydrostatic restoring forces and moments are due to the vehicle weight W and buoyancy 

B. The net buoyancy force in the inertia system is (W-B) in the positive Z-direction (downwards). 

Therefore, in the ship fixed system, 

Xw =-(W-B) sine 

Yw = (W - B) cos0 sin 4 (2.25) 

Zw =(W-B)cos0cos<|) 

The moments due to W and B in the component form, 

Kw =(yGW-yBB)cos9cos<|)-(zGW-zBB)cos0sin<l> 

Mw =-(xGW-xBB)cos0cos<f>-(zGW-zBB)sin0 (2.26) 

Nw =(xGW-xBB)cos0sin(|) + (yGW-yBB)sin0 

Forces and moments due to control surface deflections are reflected as added drag in 

surge, while in sway, heave, pitch and yaw they are directly proportional to control surface 

deflection [Ref. 6], 

Xc =(XqSj5s +Xq5B8b)q + Xr5rr5r +Xo5ru5r + (Xro5i5s +Xffi5b8b)w     (2.27) 

+ X5A5s
2+X5b5b8b

2+X5A5r
2+Xp(n) 

Yc=YSrSr+Yp(n) (2.28) 

Zc=ZSsSs+ZsSb (2.29) 

Kc=Kp(n) (2.30) 

MC=MS5S+Ms8b8 (2.31) 

Nc=Ns8r+MP(n) (2.32) 

where, 

8r = rudder deflection 

8S = stern plane deflection 

8b = bow plane deflection 

10 



The terms with subscript P represents the forces and moments generated by the propeller 

revolutions, n. The most significant of these forces is the propeller thrust, Xp (n), while Yp ,KP, 

and Np represent small asymmetry effects generated by the propeller.These three terms would 

be zero for the vehicle equipped with two symmetrically loaded counter-rotating propellers. 

The hydrodynamic forces and moments are expressed as polynomial functions of the 

translational and rotational velocities of the vehicle with respect to the water by using a constant f 

coefficient model, ^ 

XH =XPPp
2 +Xqqq

2 +X„r2 +Xprpr + Xüü + Xwqwq + Xüpup + Xurur (2.33) 

+ XÜOu
2+Xrat0w

2+R(u) 

YH = Ypp + Y,f + Y^pq + Y^qr + Yöü + Ypp + Yrr + Yuqoq + Yffip wp + YOT wr       (2.34) 

+ Ywu + Yuwuw 

-ipf[cDYh(xXu + xr)2+CDzb(xXw-xq)2]^-^dx 

ZH =Zqq + Zppp
2+Zprpr + Zrrr

2+Zww + Zqq + Zupup + Zurur + Zww + Zuuu
2   (2.35) 

-ipf[cDYh(xXu + xr)2
+CD2b(xXw-xq)2]^^dx 

2 u cf Vx/ 

KH =Kpp+Kff + Kpqpq + Kqrqr + KöO + Kpp + Krr + Küquq + Kwpwp + KWIwr (2.36) 

+ Kuu + Kl)wuw 

MH =Mqq + Mppp
2+Mprpr + Mffr

2+Mww+Mqq + Mupup + Mwur + Mww+MUüu 

+ ip|[cDYh(x)(u + xr)2 +CDzb(XXw-xq)2]^^xdx (2.37) 
2 U cf vV 

NH =Npp + Nfr + Npqpq + Nqrqr + Nüu + Npp + Nrr + Nuquq + Nwpwp + Nwrwr   (2.38) 

11 



+ N„u + Nwow 

ip f [CDY h(x)(u + xr)2 + CDzb(x)(w - xq)2 ß^xdx 
2 u cf vv 2 

where R(u) represents the vehicle's resistance curve, which is negative since positive direction is 

ahead.The cross flow integral terms are integrated over the length of the body and they model 

|  » quadratic drag forces.The cross flow velocity U^ is, 

J Ucf=[(u + xr)2+(w-xq)2I/2 (2.39) 

D.        EQUATIONS OF MOTION IN VERTICAL PLANE 

We will deal with only vertical plane variables; i.e., heave, pitch, and surge.The vertical 

plane stability analysis involves heave and pitch motions .However, the surge equation couples 

into pitch and heave through the metacentric height zG.This is a dynamic coupling, and could be 

eliminated by redefining hydrodynamic coefficients with respect to the ship's center of gravity 

instead of its geometric center. 

Restricting the motions of the vehicle to the vertical (dive) plane, the only significant 

motions that must be incorporated to model the vehicle in the dive plane are, the surge velocity 

(u), the heave velocity (w), the pitch velocity (q), the pitch angle (0) and the global depth 

position (z).This restriction simplifies the previously developed equations to a system of four 

non-linear equations of motion, which are, 

0 = q (2.40) 

(m-Zw)w + (-mxG-Z4)q = (m + Zq)Uq + mzGq2+ZwUw + (W-B)cose 

1     nose e \3 

-ip f CDb(x)7"Xq    dx + U2(ZSi +aZ5b)5s (2.41) 

12 



(-mxG-Mw)w + (Iy-M4)q = (Mq-mxG)Uq-mzGwq + MwUw + U2(M5s+aM5b)8s 

--pTcDb(x)^^-xdx-(xGW-xBB)cose-(zGW-zBB)sinG       (2.42) 
2 L        lw~xci| 

z = -Usin0 + wcos0 (2.43) 

These equations can be linearized for a level flight path when the dive plane angle is 

zero, 5o=0. By setting all the time derivatives to zero and neglecting for the moment the 

hydrodynamic drag terms, the following are obtained : 

ZwUw + (W-B)cos0 = O (2.44) 

MwUw - (xGW - xBB) cos9 - (zG W - zBB) sin 9 = 0 (2.45) 

q = 0 (2.46) 

-Usin0 + wcos0 = O (2.47) 

If the vehicle is neutrally buoyant: 

XG  — XB (2.48) 
W = B 

Then the Equations 2.40-2.43 are linearized as : 

0 = q (2.49) 

(m-Zw)w + (-mxG-Z.)q = (m+Zq)Uq + ZwUw + U2Z55s (2.50) 

(-mxG -M*)w + (Iy -Mq)q = (Mq -mxG)Uq + MwUw-(zG -zB)W0 + U2M58s 

(2-51) 

z = -U0 + w (2.52) 

Both Z5 and M5 are a linear combination of the respective stern and bow hydrodynamic 

control surface coefficients and the respective input value of S.This makes the system of 

equations as a multiple input system.To reduce this system into a single input system, the linear 

combination of control inputs will be modified into the following form, 
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) 

Z6=Z5s+aZ6b  and    M5=M6s+aMSb (2.53) 

This will allow a single input 8 to control both stern planes and bow planes, and will 

cause the bow planes to be slaved to the stern planes.This technique is known as dual control.The 

value of a will range from -1 to l.The selection of the value of a will allow the planes to operate 

as desired for the particular maneuvering condition, i.e., <x = 0 for no bow plane control, a = -1 

for bow plane and stern plane control opposed to each other, resulting the maximum pitch 

moment, and a = 1 for bow and stern plane control in the same direction, resulting the maximum 

heave force. 

These equations can be shown in matrix format as follows, 

10 0 0 

0        (m-ZJ -(mxG+Z.) 0 

0   -(mxG+M*) (Iy-M4) 0 

0               0 0 1 

e 
w 

q 

0 0 1 0 e 0 

o         zwu (Zq+m)U 0 w + u2z6 

-(zG-zB)W   MWU (Mq-mxG)U 0 q U2M 

-U               1 0 0 z 0 

"e" 0 0         1 0] "0" "o 
w 

q 
= 

a21ZGB 

a31ZGB 

a22U    a23U 

a32U   a33U 

0 

0 

w 
+ 

q 

b,U2 

b2U2 

z -u 1         0 oj z 0 

(2.54) 

(2.55) 

where 

Dv = (m-Z*)(Iy -M4)-(mxG + Z.)(mxG +MJ 

ZGB   — ZG       ZB 

a21 — 
(mxG+Z,)W 

Dv 

(2.56) 

(2.57) 

(2.58) 
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a22  -' 

(I -M.)Zw+(mxG+Z.)M q/       w 

Dv 

(T -M,)(m + Zt|) + (mxG +Z.)(Mq -mxG) 
l23 

a31   - 

Dv 

-(m-ZJW 
Dv 

a32  - 

(mxG +M^)ZW + (m-ZJMv 

Dv 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

For the case considered during this work, the vehicle has also two ballast tanks which 

were designed to be used during the grounding. These ballast tanks can be seen in Figure 2-1. 

Figure 2-1. The Location of Ballast Tanks in the AUV 

The new forces are 5wi and 8w2 and since the ballast tanks are not located in the same distance 

from the center of gravity of the vehicle there will be also two moments, L]8wi and L2SW2. There 

will be also small change in moment of inertia. So all these changes can be listed as; 

(2.63) 

(V^+ÖWj+öwJ 

W = W0 +5wj +6w2 

m = 
g 

I  =Iy +L1
2(5w1/g) + L2

2(6w2/g) 

And the new equations of motion become, 

0 = q 

(2.64) 

(2.65) 

(2.66) 
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(m-ZJw-(mxG+Zjq = (m + Z )uq + mzGq2+Zwuw + (W-B)cos0 (2.67) 

-Ip|cDb(x)^s)l + U%6 
V      J -U7 — YH w-xq| 

(-mxG -M*)w + (Iy -Mq)q = (Mq -mxG)uq-mzGwq + Mwuw-(xGW-xBB)cos0 

--pfCDb(x)^^xdx-(zGW-zBB)sin0 + u2Md8s + (L25W2 -L^WJCOSG 
2  J |w - xq| 

(2.68) 

z = -usin9 + wcos9 (2.69) 

After linearization, 

0 = q (2.70) 

(m-Zjw-(rrDCG+Z^)q = (m+Zq)uq + Zwuw + (W-B)-|pJCDb(x)ip^L + u2Zd5 
w-xq 

(2.71) 

(-mxG -M*)w + (Iy -Mq)q = (Mq -mxG)uq + Mwuw-(xGW-xBB)-(zGW-zBB)9 

-ipfCDb(x)^   Xq^xdx + u2Md5s +(L28w2 -L.Sw,) 
9       J 1*7 — YH w-xq 

z = -U0 + w 

and in matrix form, 

M 

0 

(m-Zj 

(-mxG-Mw) 

0 

0 

(mxG+Zq) 

(Iy-Mq) 

0 

(2.72) 

(2.73) 

(2.74) 

A = 

0 0                  10 

0 Zwu        (m + Zq)i       0 

-(zGW-zBB) MWU     (Mq-mxGV     0 

-u 10              0 

B   = 

0 0 

1 1 

-L, L2 

0 0 

Zdu
2 

Mdu
: 

(2.75) 
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u = 
8w, 

8w, state  variables = 

6 

w 

q 
(2.76) 

where; 

x =M-'A0x + M'B0U (2.77) 
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III.      CONTROL SYSTEM DESIGN 

Flight control and weight control compose two main subsystem of a soft grounding 

system. In flight control the vehicle is kept neutrally buoyant and the plane angles are the control 

inputs. However in weight control, the flow rates for both balast tanks are controlled with zero 

forward velocity and plane angle. These two components of the designed control system were 

explained in following sections. 

A.        FLIGHT CONTROL 

The dynamics of underwater vehicles are described by highly nonlinear systems of 

equations with uncertain coefficients and disturbances that are difficult to measure. An automatic 

controller for this kind of vehicle must satisty two conflicting requirements: First, it must be 

sophisticated enough to perform its mission in an open ocean enviroment with ever-changing 

vehicle/environment interactions. Second, it must be simple enough to achieve real-time control 

without nonessential computational delays. Sliding mode control theory yields a design that 

fulfills the above requirements. It provides accurate control of nonlinear systems despite 

unmodeled system dynamics and disturbances. Furthermore, a sliding mode controller is easy to 

design and implement. A very effective sliding mode controller can be developed from the 

linearized equations of motion for an underwater vehicle [Ref. 7]. 

The sliding mode control design problem can be stated as follows: 

Given the system; 

x = f(x) + g(x)u (3.1) 

where the state vector equation is, 

0 

w 

q 
z 

(3.2) 
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Choose the Lypunov functions 

V(x) = i[a(x)f , (3.3) 

where 

c(x) = sTx  . (3.4) 

The scalar function o(x) can be viewed as a weighted sum of the errors in the states x. 

For stability, it is desired the time derivative of V(x) to be negative, 

V(x) = cd < 0, (3.5) 

This can be achieved if 

.2 

which means that 

ac = -r|2b   , (3.6) 

6 =-resign (a) (3.7) 

Using a(x) = s x , we get 

ä = sTx = sTf(x) + sTg(x)u = -T|2sign(a) , (3.8) 

and solving for u, the control law is obtained, 

u = 4Tg(x)rsTf(x)-[sTg(x)]"1t1
2sign(a) , (3.9) 

In this control law, the first term is nonlinear state feedback, and the second term is a switching 

control law. The term rj2 is an arbitrary positive quantity, we usually select it such that V is 

negative even in the presence of modeling errors and disturbances. The above control law 

guarantees stability of a(x) = 0, or sTx = 0. It is necessary to find s. If   CT(X) = 0 , the system 

becomes 

u = -[sTg(x)]Vf(x) , (3.10) 

and 
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x = f(x)-g(x)[sTg(x)]",sTf(x). 

when the system is linearized, 

x = Ax + Bu 

The previously developed linear state matrix equation is, 

(3.11) 

(3.12) 

10 0 0" 

0      (m-Z*)      -(mxG+Zq) 0 

0  (-mxG-Mj     (Iy-Mq) 0 

0 0 0 1 

e 
w 

q 
z 

0 0 10 

0 Zwu      (m + Zq)i     0 

-(zGW-zBB) MWU  (Mq-mxG)i  0 

-u 

e" 
w 

q 

M = 

Zdu
2 

Mdu
2 

0 

10 0 0 

0      (m-Zj      -(mxG+Zq) 0 

0  (-mxG-Mj     (Iy-Mq) 0 

0 0 0 1 

(3.13) 

(3.14) 

A  = 

0 0 10 

0 Zwu      (m + Zq)u     0 

-(zGW-zBB) MWU  (Mq-mxG)a  0 

-u 

B  = 
Zdu

2 

Mdu
2 

(3.15) 

where W = W0 since the vehicle is neutrally buoyant during the flight.The above can be written 

as, 

x = Ax + Bu 

but the dynamics and input matrices should be replaced by 

A = M-,A0,andB = M',B0 

and the system is controlled with sliding mode controller where 

u = -(sTB)"' sTAx - (sTB)_1 rjsat sgn(sTx /<|)) 
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(3.17) 
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The closed loop dynamics matrix is 

Ac = A - B(sTB)-' sT A = A - Bk 

then 

(3.19) 

k = (sTB)-,sTA^sTBk = sTA=>sTA-sTBk = 0 , (3.20) 

so the control law becomes , 

u = -kx-(sTB)"'r|satsgn(sTx/(|>) (3.21) 

The gain vector k can be found easily by using Matlab. The Matlab command place accepts as 

inputs the A and B matrices along with a vector of the desired closed loop poles and returns the 

vector k. 

B.        WEIGHT CONTROL 

In the second part of the system, the balast tanks were used to ground the vehicle on the 

ocean floor. The vehicle's grounding can be simulated by adding weight proportionally to both 

tanks at constant flow rate and by using zero plane angle (Ss - 0 ) with those four state variables 

([6,w,q,z]') defined previously. It is needed to add weight proportionally to eliminate the 

moment effect since these balast tanks are not located in the same distance from the center of 

gravity. As it can be seen from the Figure 3-1, Lj > L2. 

To get zero moment, 

Figure 3-1. The Location of Ballast Tanks 
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5w2=^-5w, (3.22) 
L2 

If the ballast pumps only pump water into the tanks at fixed rate, there is no control on 

pitch or depth rate and pitch angles can develop large values. It is proposed therefore, that in 

order to keep the pitch angle within limits, flow rate of each tank should be controlled separately. 

This can be achieved by defining two more states to be added to those existing four states. And 

further these two states are, 

5w, =f, 1      ' (3.23) 
5w2 =f2 

where Sw; represents change of weight in tank i and f| represents flow rate of pump i. So the 

nonlinear equations of motion become : 

0 = q (3.24) 

(m-Zv,)w + (-mxG-Z4)q = (m + Zq)Uq + mZGq2+ZwUw + (W-B)cose + U2(ZSi+aZ5b)5s 

i      nose / \3 

_Ip f cDb(x)^^-dx (3.25) 
2   i Iw-X<l| 

(-mxG -M*)w + (I   -MJq = (M  -mxG)Uq-mzGwq + MwUw--p f CDb(x) ™    Xq    xdx 
2   i |w-xq| 

- (xGW-xBB) cosG-(zGW-zBB) sin 9 + U2(M6s +aM6b)5s    (3.26) 

z = -Usin9 + wcos9 (3.27) 

8w, =f, 

8w2 =f2 

(3.28) 

During the grounding operations, plane angles (5S) will be zero. Removing related terms, the 

new equations become, 
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0 = q (3-29) 

(m - Z* )w + (-mxG - Zq )q = (m + Zq)Uq + mzGq2 + ZwUw + (8w, + 8w2) cos 6 

--p I CDb(x)^ ^-dx 
7     J W —vn 

(3.30) 
tail 

w-xq 

-t     nose /       vrA^ 

(-mxG-M^)w + (Iy-M4)q = (Mq-mxG)Uq-mzGwq + MwUw--p J CDb(x)^—^xdx 

-(xGW0 -xBB)cos0-(zGW-zBB)sine + (-L18w1 +L28w2)cos9 

z =-Usin 0 + wcosB 

5w,=f, 

8w2 = f2 

where 

When these equations are linearized, 

W = W„ +5w, +5w, 

10 0 0   0   0 

0       (m-Z.) (-mxG-Z.) 0   0   0 

0   (-mxG-M,) (Iy-M.) 0   0   0 

0              0 0 10   0 

0              0 0 0   10 

0              0 0 0   0   1 

0                  0 1 

0 Zwu (m + Zq)u 

(zGW0-zBB) Mwu (Mq-mxG)u 

-u                 1 0 

0                  0 0 

0                  0 0 

0 

q 
z 

8w, 

8w, 

0 0 

0 1 

0 -L 

0 0 

0 0 

0 0 

0" "0 "0 0" 

1 CD 0 0 

L2 

0 
q 
z 

+ 
0 

0 

0 

0 f2 

0 8w, 1 0 

0 8w2 0 1 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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Flow rates for balast tanks are control inputs. In the next step, the control system will be designed 

to keep the pitch angle and depth rate within the limits during grounding of the vehicle. 

C.        WEIGHT CONTROL WITH LINEAR QUADRATIC REGULATOR 

The system was given as, 

x = Ax+Bu (3.37) 

where the gain matrix K of the optimal control vector, 

u(t) = -Kx(t) (3.38) 

minimizing the performance index gives 

J = j*°(xTQx + uTRu)dt (3.39) 

where Q is a positive-definite Hermitian matrix and R is a positive-definite Hermitian matrix. 

(uTRu) term accounts for the expenditure of the energy of the control signals. The matrices Q and 

R determine the relative importance of the error and the expenditure of this energy. Q is the state 

weighting matrix and R penalizes the control effort. It can be choosen relatively small elements of 

Q compared to R for the control law which will tolerate errors in x with low control effort u. 

Chosing larger elements of Q compared to R will result in tight control which means small errors 

will need considerably more control effort. The advantage of using the quadratic optimal control 

system is that the system will be stable as long as it is conrollable [Ref. 8]. 

By using the general equations of optimal control to solve the LQR problem gives the 

Hamiltonian 

H(x,p,u) = pT(Ax+Bu)--(xTQx + uTRu)  , (3.40) 

where p is an unknown vector (co-state vector). The necessary conditions for optimality are, 

x = — =>x = Ax + Bu (3.41) 
dp 
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p = -^^p = -ATp + Qx (3.42) 
dx 

— = 0=>BTp-Ru = 0=>u = R-1BTp (3.43) 

and the boundry conditions are, 

[pT(tf) + xf
TF]8xf =0 (3.44) 

where xf is free, 8xf is arbitrary and F is symmetric and positive-definite weighting matrix. So, 

the quantity inside the square brackets must be equal to zero and this produces a new form of 

boundary condition, 

p(tf) = -Fx(tf) (3.45) 

Now, the equations that have to be solved can be listed as follows, 

x = Ax+BR"'BTp, 

p = Qx-ATp, (346) 

x(t0) = xo> 
p(tf) = Fx(tf). 

From above equations, p(t) can be calculated and this will provide u as a function of time from 

u - R~^BTp(t) . By using Kalman's idea, p(t) can be defined as, 

p(t) = -S(t)x(t) (3.47) 

where S(t) is a symmetric positive-definite matrix. Also, 

p = -Sx - Sx = -Sx - S(Ax +BR-'BTp) (3.48) 

and, 

Qx-ATp = -Sx-SAx-SBR'1BTp (3.49) 

-Sx = (ATS + SA-SBR-,BTS + Q)x (3.50) 

and for this to be true for all x, 
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-S = ATS + SA-SBR-'BTS + Q     (with S(tf) = F) (3.51) 

This is called Riccati matrix differential equation and S(t) can be obtained by backwards 

integration of this equation. Since u = R~lBTp(t) the closed loop optimal control law can be 

found by 

u = R-'BTSx (3.52) 

where S can be found by solving the algebraic Riccati equation for the positive-definite S, 

ATS + SA-SBR-'BTS + Q = 0 (3.53) 

In Matlab, the command 

lqr(A,B,Q,R) 

solves the continuous-time, linear, quadratic regulator problem and the associated Riccati 

equation. This command calculates the optimal feedback gain matrix K for control law which 

minimizes the performance index. 

D.        GROUNDING WITH VERTICAL THRUSTERS 

The bladed thrusters are the essential elements of improved vehicle positioning systems. 

With automatic position control, the thrusters enable important scientific and industrial tasks such 

as automatic docking, station keeping, precise surveying, inspection, sample gathering and 

manipulation. Incorporating precise models of thruster dynamics into the feedback control 

systems of marine vehicles promises improved vehicle positioning [Ref. 9]. 

Most small-to-medium sized underwater vehicles are powered by electric motors driving 

propellers mounted in ducts. The propeller is mounted in a duct or shroud in order to increase the 

static and dynamic efficiency of the thruster. Thrusters are subject to serious degradation due to 

axial and cross flow effects. Axial flow effects can be reasonably approximated by the modeling 

of the thruster unit alone, the velocity of the fluid entering the thruster shroud effectively changes 

the angle of attack of the propeller, thus altering the force produced. Cross flow effects are much 
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more difficult to model and are highly dependent on the position of the thruster on the vehicle. 

The amount of force produced by the thruster will reduce the overall gain of a control system 

unless these effects are specifically in the controller design[Ref. 10]. 

For this work, NPS Phoenix vehicle is taken as an example. Figure 3-2 shows the 

locations of vertical and horizontal thrusters on the vehicle.Those four tubes represents the 

thruster shrouds. In Figure 3-3, the vertical thruster tubes can be seen throughout the vehicle. 

Thruster blades are located close to the bottom of those tubes. 

Thruster moment and force equations were developed by Louis L.Whitcomb and Dana 

RYoerger [Ref. 9]. On that paper, the control system for these thrusters was also discussed. But 

in this study, these thruster force and moments were assumed as some constant parameters and 

also no control law was developed to control them. Since the main element for grounding is the 

weight control, the thrusters were just used as auxiliary elements of this procedure in order to 

increase depth rate. By using thrusters in addition to the weight control, following changes 

should be done to heave and pitch rate equations, 

(m-Zw)w+(-mxG-Z.)q = (m + Zq)Uq + mzGq2+ZwUw + (8w1 +8w2)cos6 

1      nose ( rt\^ 

~P J CDb(x)7"Xq    dx+Z^ (3.54) 

(-mxG -MJw + (Iy -Mq)q = (Mq -mxG)Uq-mzGwq + MwUw-^-p J CDb(x)-^^pxdx 
•^      tail I T| 

-(xGW0 -xBB)cosG-(zGW-zBB)sine + (-L15w, + L28w2)cos6-MltaBterq    (3.55) 

where ZrÄra^randMAreiter are thruster force and thruster moment respectively. 
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Figure 3-2. Horizontal and Vertical Thrusters of NPS Phoenix AUV 
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Figure 3-3. Vertical Thrusters and Thruster Shrouds of NPS Phoenix AUV 
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IV.       SIMULATION 

For the realistic simulation of the grounding system, some other control functions were 

used in addition to the flight and weight controls. The system was simulated by using Matlab's 

Simulink program. For the dynamic control, Matlab's s-function was used. This tool gives us the 

opportunity to use the memory dynamically. In fact, it is nothing different than a ODE solver. In 

that block, the state equations were solved by using Matlab's ode45 function with variable step 

size. 

As depicted in Figure 4-1, two main components of control system are flight control and 

weight control, and they also form two main loops of simulation. 

„ *». 
/ 

5w, 

Flowrate2      z 

Flowratel      q 

w 

e 

9 
3 e 

w 
Flowratel 

q 
Flowrafe?. 

\ 
 ► ./ 

f  » Plane Ang.                       x 

5w, 

6w2 

9 e 
w 

Plane Aug. 
q 

- 

—- J 

Figure 4-1. Dynamic Controller with Weight and Flight Controllers 

For the simulation of longitudinal motion, in addition to the states used in the control 

laws, X was also included. But this term was not used in control design. X was defined as, 

X = u.cos0 + wsin9 + Ucz (4.1) 

where u is the forward speed and UCz is current. 

The design of weight and flight controls were explained in previous chapter. Zcom is the 

commanded flight depth. The sliding mode controller calculates the control surfaces from the 
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error which is the difference between the commanded and actual depths. The switch from the 

flight control to the weight control is decided by the forward speed command produced by speed 

control unit. This unit has two parts: Speed control and secondary control units. 

The speed control block seen in Figure 4-2 reduces the forward velocity to 0.1 ft/sec 

when the vehicle reaches to the commanded flight depth. But this is not a sudden decrease in the 

speed. Since the longitudinal position was also commanded by Xcom block, the control unit 

calculates the necessary break distance in order to reach that location. The break distance was 

determined from a known deceleration in the longitudinal direction and the time needed to 

ground from the flight depth. As seen on the Figure 4-2, the input parameters to the speed control 

block are current and commanded depths, current and commanded longitudinal locations, 

commanded forward speed and ground depth; the output of the block is the controlled forward 

speed. 

i 

Zcur 

( 2  ~~ 
Zcorn 

Comm.Spd    "- 

'Of 

Unit Delay 

X 

x_real 

cny 
x_com 

(X; 
zgrnd 

► Mux 
MATXAB 
Function 

Forw.Spd 

Mux2 speedcont 

Speed Control 

Figure 4-2. Speed Control Block 

As mentioned above, the main control input for the speed control block is the depth. 

When the depth error (Zcom - ZCUIT) becomes smaller than a certain number, the deceleration 

procedure starts. One problem with this method is at the beginning of the grounding, the depth 

error starts to increase again which means that the speed control will increase the forward 
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velocity until it is equal to commanded speed. To prevent this, the secondary control unit seen in 

Figure 4-3 was designed: 

/ o-> 
\ 

!     ComSpd 

UhitDeUy 

t 

o 
UnitDebyl 

! O 

xO 

MATLAB 

Function -KD 
AetSpd 

^ 
Secondary Control 

Figure 4-3 Secondary Speed Control Block 

Two of the five inputs of this block are the weights in both ballast tanks. If the weight in one or 

both of those two tanks are different than zero, then the output of the secondary control becomes 

0.1 (forward speed). Otherwise, the block passes the value coming from the speed controller 

without changing. 

The speed command produced by the secondary controller provides the switch from 

flight to the grounding procedures. Figure 4-4 shows secondary control, plane angle controller 

and weight controller blocks. 
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Figure 4-4. The Relationship of Secondary Control Block with Plane Angle and 

Weight Controller Blocks 
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When the forward velocity is reduced to 0.1 ft/sec, the weight controller starts to produce 

flow rate commands by using the methods described in Chapter III. The plane angle control block 

passes the value coming from the sliding mode controller (flight control block) without changing. 

But with the reduced speed, it makes the plane angle zero. So this ends the effect of flight control 

on the vehicle, in other words, the weight controller gets the control on the vehicle's motion. 

Figure 4-5 shows all functions mentioned above with flight and weight controllers as a 

complete Simulink diagram. The flow chart in Figure 4-6 shows the logic of the procedure. The 

Matlab programs used in the simulation are presented in Appendix A. 
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Figure 4-6. Flow Chart for Control Steps 
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V. RESULTS AND DISCUSSION 

A. INTRODUCTION 

In previous chapters, the mathematical models of the control system were developed. To 

prove the validity of the flight and weight controllers, the system was simulated by using the 

parameters of NPS Phoenix AUV. These parameters are presented in Appendix B. First the AUV 

was controlled by flight controller (sliding mode control) during its diving from surface to a 

commanded flight depth. Second, the flight controller and the different cases of weight controller 

were simulated on the vehicle. 

B. FLIGHT CONTROL 

In the NPS Phoenix vehicle , there are four vertical control planes powered by servo 

motors. Using the definitions in Chapter II and Chapter HI with the parameters of NPS Phoenix 

AUV and a nominal speed of 4 ft/sec, A and B matrices becomes 

A = 

0 0 10 

0.0155 -3.4119 -0.9247   0 

-0.1086 0.6027 -0.9667   0 

-4 1 0         0 

B 

0 

-0.7139 

-0.0123 

0 

(5.1) 

By choosing the poles as p = [-2, -2.1, -2.2, 0], the vector k was calculated, 

k = place(A,B, [-2, -2.1, -2.2, 0]) 

k = [-18.3998, -2.4217, -15.6369, 0] 

Ac is calculated from 

Ac = A-Bk 

0 0 1 0" 

-13.1205 -5.1408 -12.0882 0 

-0.3352 0.5729   -1.1592 0 

-4.0 1 0 0 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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The eigenvector of AT
C for the pole at the origin is the sliding surface 

s = [-0.8733 ; -0.0272 ; -0.4692 ; 0.1287] (5.6) 

as a result with <J> = 0.1 , the control law becomes 

8 = -18.39980 - 2.4217© -15.6319q 

- (0.4)satsgn{- 0.87336 - 0.0272© - 0.4692q + 0.1287(z - zcom) ]/0. l}       (5.7) 

The motion of the vehicle is restricted to the vertical plane. The motion profiles for depth 

and pitch have been specified using sliding mode control. For the maneuver, the commanded 

depth was 4 ft and the vehicle was originally at the surface. As can be seen from the Figure 5-1, 

during the flight, maximum pitch angle becomes 0.042 rad (~ 2.5 degrees). When the vehicle 

reaches to the commanded depth as seen in Figure 5-2, the pitch angle becomes zero as expected . 

The controller produces the dive plane angle command according to the depth error. In the 

beginning the depth error is large, so the system produces higher values of plane angle command 

in order to eliminate this error. With the full state feedback, the vehicle responded very well to 

these commands. 

C.        ADDING WEIGHT TO BOTH TANKS WITHOUT CONTROL 

After completion of the flight to the commanded depth, the vehicle gets water to both 

tanks in order to become heavy. Figure 5-3 shows the weight increase in the tanks. During 

grounding, the planes kept at zero degrees as depicted in Figure 5-4. To keep depth rate within 

limits, the maximum weight pumped in was limited at 5 lb for each tank. With this additional 

weight, the vehicle sat on the ground (10 ft.) with 0.6 ft/sec depth rate. Eventhough the weight 

was added proportionally (8w2 = (L, /L2 )5w,) to get zero momentum effect, there is still some 

momentum because of the vehicle itself. This momentum was created by the pitch and heave 

motion of the vehicle. As a result, the pitch angle increases since there is no control on either 

depth rate or pitch angle. As seen on Figure 5-5 and Figure 5-6, at the end of a 6 ft. drop, the pitch 
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angle becomes 0.6 rad. (35 degrees). This method can be used for very short grounding depths (2- 

3 ft), but for other cases, it is not recommended since the system is completely unstable. 
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Weight in balast tank vs time 

4.5 

4 /^m^ 
.£> 
Vw' 35 

•a 
t« 

•4-» ■I 
*J 
C/5 
«S 

13 2.5 
x> 
.S 2 
+-> 

^ 
*^4 1.5 

£ 

0.5 

: : : j : / j 
I ! * :        / | 

_.  I i i . i 1.../...—i 

10        15 20        25        30 
Time - sec 

35        40 45 50 
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Depth vs time 
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A = (5.8) 

D.        WEIGHT CONTROL WITH LINEAR QUADRATIC REGULATOR 

In order to keep the depth rate and pitch angle within limits, the linear quadratic regulator 

technique was used in designing a weight control. The mathematical model for this control 

system was previously explained in Chapter III. The parameters of NPS Phoenix vehicle was 

used for simulation. With these known parameters and 0.1 ft/sec forward velocity, A and B 

matrices become, 

0               0 10 0 0 

0.0155 -0.0853 -0.0231 0 0.0223 0.0196 

-0.1086 0.0151 -0.0242 0 -0.0130 0.0065 

-0.1     1 0 0 0 0 

0      0 0 0 0 0 

0      0 0 0 0 0 

In practice, high values of pitch angle (> 15 degrees) are not desired for a safe and stable 

grounding of the vehicle. So the designed control law should not tolerate too much oscillations of 

pitch angle. This kind of control law can be provided by choosing larger elements of Q for pitch 

angle compared with the others. So, Q and R matrices were chosen as follows: 

^104 0   0    0 0   o' 

0 10     0 0   0 

0 0    10 0   0 

0 0   0   102 0   0 

0 0   0     0 10 

0 0   0     0 0    1 

0   0 

0   0 

B = 
0   0 

0   0 

1    0 

0    1_ 

Q = (5.9) 

R = 
3xl05 

0 

0 

3xl05 

By using lqr command in Matlab, control gain matrix K can be obtained, 

[K,s,m]=lqr(A,B,Q,R) 

and with the numbers provided, 

(5.10) 

(5.11) 
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K = 
' 0.0608 0.1263 -0.0526 0.0138 0.0754 0.0365" 

-0.0322 0.1294  0.0021  0.0120 0.0365 0.0613 
(5.12) 

Since grounding to the ocean floor from a certain depth desired, the command matrix should be 

Xcom = [0 0 0 Zgr 0 0]' where Zg, = (ground depth) - (the depth where grounding is started). So the 

control law becomes, 

U = -KxCTOr (5.13) 

where 

Xeiror     X - X^m V^ • * V 

The simulation of the system with this control law can be seen in Figure 5-7 through 

Figure 5-14. 

Positive flow rate represents water inlet to the balast tanks, and negative flow represents 

the opposite. The pumps are not allowed to pump out when there is no water in balast tanks. 

Figure 5-7 and Figure 5-8 show when the weight in a balast tank and the pump flow rate become 

zero. This is provided by a simple controller which compares the weight in ballast tank (8w) and 

flow rate (f). If 5w is equal to zero and flow rate is a negative number, than the control input (f) 

ofthat pump becomes zero. 

At the commanded depth, the speed control unit slows down the vehicle to an almost zero 

forward velocity (u = 0.1 ft/sec). The speed control unit's other duty is to control the longitudinal 

position. During the flight, the speed control unit compares the vehicle's location (x) with 

commanded location (xcom) which is a longitutional distance from the original position. When the 

vehicle is at the commanded depth of flight, a deceleration procedure starts. A simple algorithm 

was used to calculate the minimum distance needed for deccaleration to reach the commanded 

location at the end of the grounding. The change of forward velocity due to the depth change can 

be seen in the Figure 5-13. 
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The depth rate as seen in Figure 5-11 is very low in this method because of the command 

given to the weight control. The weight control produces its control values due to the errors 

which are the differences between the commanded and the actual states. In the above case, only 

the depth (z) command has a value, the commands for other states are zero. At the end of the 

simuation, the pitch angle becomes almost zero as seen in Figure 5-12. In the first half of the 

grounding, Figure 5-9 and Figure 5-10 shows an increase in weight for both tanks, but in the 

second half, the system tries to make the vehicle neutrally buoyant as expected. 

E.        LQR WITH POSITIVE WEIGHT COMMAND 

So when the vehicle reaches the ground, there will be almost no water in balast tanks. But 

for the stability of the grounding, the vehicle should be heavier. For this reason, in addition to the 

depth command, the weight can also be commanded to increase the depth rate or the weight of the 

vehicle at the end of the grounding. So, the command vector, Xc0m is changed to , 

Xcom = [0,0,0, Zground , 5wCOml , SWconrf]' (5.15) 

where 5wCOm are some positive numbers and represent the command for additional weight and the 

system was simulated with these new parameters. Figure 5-15 through Figure 5-20 show the plot 

of this simulation. In this case, pitch angle reaches a maximum value of 0.18 rad (10.31 degrees) 

which is 4 times greater than the previous simulation.With increasing pitch angle, there is also an 

increase in the depth rate. The depth rate becomes 0.35 ft/sec which is again almost 4 times 

greater than the previous simulation. Since the commanded depth for the control law is the depth 

of the ground, the system tries to make the vehicle neutrally stable to keep the vehicle on that 

depth by pumping water out of balast tanks. After grounding, pumps should pump water in balast 

tanks until they are full. Because this additional weight is needed to keep the vehicle sitting on the 

ground against the current. 
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Another method for increasing the depth rate is to command with a depth value which is 

greater than the actual ground depth. Because in the beginning the error will be higher, the weight 

controller will produce higher values of flow rate. 
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Figure 5-11. Depth Change During Flight And Grounding 
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Change in depth and forward velocity 
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Figure 5-17. Weight Change In Ballast Tank-1 With Depth And Weight Commands 
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Figure 5-18. Weight Change In Ballast Tank-2 With Depth And Weight Commands 

50 



Depth vs time 

10 

<S  6 

Q 4 

10 20 30 40 

Time - sec 
50 60 

Figure 5-19. Depth Change With Weight And Depth Commands 
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F. GROUNDING WITH THRUSTERS IN ADDITION TO WEIGHT CONTROL 

NPS Phoenix AUV's cross-body thrusters consist of a 3 in. ID aluminum tube with a 

centrally located 4 blade brass propeller. A spur gear is mounted around a 3 in. diameter propeller 

and driven by a pinion connected to a 24 Vdc motor giving a 2.5:1 gear reduction. The twist of 

the propeller blade is symmetric enabling bi-directional operation delivering approximately 1.0 

pound of bollard pull force in either direction [Ref. 11]. The system was simulated with the new 

state equations described in Chapter III and the same weight control conditions defined in section 

C of this chapter. Figure 5-21 through Figure 5-26 show the result of this simulation. The depth 

rate becomes 0.5 ft/sec and the pitch angle reaches a higher value since there is no control on 

thrusters. Because the thrusters are dominant in this case, the weight controller losses most of its 

effect on pitch control. 

G. BOTTOM STABILITY 

The ground also affects the vehicle closing to the bottom. The theory explained by 

Hoerner and Borst [Ref. 12], predicts that roughly below CL =1.5 (CL represents lift coefficient), 

lift will be increased in proximity of the ground. Eventhough no experimental data is provided for 

NPS Phoenix AUV, it can be assumed that lift coefficient will be less than 1.5. For study of the 

bottom stability, two different cases of grounding were considered. Figure 5-27 shows these two 

cases. 

In the case that the vehicle's stern touched to the bottom first, the lift will decrease the 

weight and inrease the angle of attack. This reduces the stability and makes grounding more 

difficult. But this feature can be very helpful when leaving the ground. In the other case, the bow 

of the vehicle touches the ground first. This time lift makes the vehicle heavier and decreases the 

angle of attack providing more stable grounding. After the completion of grounding process, the 

vehicle sits on the bottom with no lift since the lift coefficient, CL is assumed zero because of the 

symmetric shape of the NPS Phoenix AUV. Figure 5-28 shows the ocean current that the vehicle 
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can stand with different ballast weights sitting on soil with 0.7 friction coefficient. When both 

ballast tanks are filled with water completely (-23.4 lb water in each tank), the vehicle can keep 

its position against 1.52 m/sec (~3 knots) of current. 
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Pitch angle vs time 

-0.005   ■ 

-0.01 

13 
0) 

1 
to • 

u 

-0.015 

-0.02 

0.025 

•?   -0.03 

-0.035 

-0.04 

-0.045 

 1 1 1^—   " p— j 1  

1     ] "/  1 \   1 
\ - f ~x~f f ~" " 

\l 
1 1             | \j              / 

1                   -                   / 1 1        1  / 
I                 •                / 
1             i            / 1 l\      1/ 
I                 •              / 

\               -          / | V/ 
1 
i i i                         > 

10 20 30 40 
Time - sec 

50 60 
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VI.      PROPOSED HARDWARE IMPLEMENTATION 

For NPS Phoenix Vehicle, a full description of all sensors and other hardware 

components which were present on the vehicle were given by Marco [Ref. 11]. It covers the 

gyroscopes, speed sensor, short baseline navigation system and GPS components. These 

components are used to sense vehicle roll, pitch and heading angular positions, depth, forward 

speed and location in global coordinates. Two open screws located at the stern, two vertical and 

two lateral cross-body thrusters, eight control surfaces (four rudders and four vertical planes) 

control these states. In the new design with dynamic ballast control, two tanks (bow and stern), 

two water pumps, and two flow meters as sensors were added to the vehicle. Those tanks and 

pumps were already shown on Figure 3-1. More detailed design can be seen on Figure 6-1. 

i  

Pres. Relief 

IM rax mz 
Valve 

A/D Converter Water 

Figure 6-1. Hardware Components For Ballast Control System 
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The pump provides one way continuous water delivery with its positive displacement, 3 

chamber diaphragm. Its maximum capacity is 1.75 gpm with 12 nominal dc voltage. Since the 

pump works only one way, a four connection, three position, spring centered, selonoid-control 

valve is used to change the flow direction. By simply changing the position of the valve, the same 

pump can be used to pump water both in and out of the ballast tank. 

Flow meters will be used as sensors to provide flow rate information to the control 

system. Flow rate will be calculated from the pressure difference between the two ends of the 

meter and this analog data will be converted to digital one in A/D converter in order to be used in 

the main computer of the vehicle. 
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VII.     CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

• A method for modeling and simulation of a soft grounding system for an underwater 

vehicle has been developed and presented. This study outlined three different sections of that 

system, flight control, weight control and bottom stability. 

• The critical parameters are pitch angle, depth rate and pump flow rate. The limitations 

of these parameters relative to the new NPS AUV have been determined and a feasible design has 

been validated by simulation. 

• An LQR state feedback control provided sufficient weight keeping to maintain the 

vehicle pitch angle within the limits, but the depth change rate is limited. For a higher depth rate, 

the vertical thrusters should be used in addition to the weight control. This uses more energy, 

however, which may be unacceptable in practice. 

• In ocean currents, the bottom stability depends on vehicle's direction and angle of 

attack. For stable grounding, the vehicle would commanded to face the opposite direction of the 

current. Bottom conditions are highly variable, but an estimate indicates that stability for currents 

less than 1 knot may be possible. 

B. RECOMMENDATIONS 

The most important recommendation and the next step should be to perform experiments 

in Monterey Bay with added weight in the vehicle. With the Sontek ADV velocimeter to measure 

water velocity, these experiments will determine weight requirements for bottom stability in 

typical ocean conditions. 
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APPENDIX A 

The matlab programs used to simulate the dynamic behavior of the NPS Phoenix are 

given in this appendix 

MATLAB PROGRAMS 

% - = 

% denemel.m is the main function of the dynamic system. It defines the parameters, variables 

and 

% state vectors 

% —= 

function [sys,x0,str,ts] = denemel(t,x,u,flag) 

global rho Zqdot Zwdot Mqdot Mwdot Wo g Iyo L 

% The parameters used for the simulation 

% The physical parameters of the vehicle 

L  =94.0/12.0; 

LI =24.25/12.0; 

L2 = 14.75/12.0; 

Wo =435.0; 

g   =32.174; 

Bu =Wo; 

Iyo = 42.0; 

rho =1.94; 

xG = 0.0; 

xB =xG; 

ZG =0.5/12.0; 

ZB =0.0; 

ZGB = ZG - ZB; 

% The hydrodynamic coefficients 

Zqdot = -0.00253*2756.81; 

Zwdot = -0.09340*377.67; 

Zq   = -0.07013*377.67; 

Zw   =-0.78440*51.72; 
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Zds  =-0.02110*51.72; 

Zdb  =-0.02110*51.72; 

Mqdot = -0.00625*20137.50; 

Mwdot = -0.00253*2756.81; 

Mq   =-0.01530*2756.81; 

Mw   = 0.05122*377.67; 

Mds  =-1.7664; 

Mdb   = 1.3260; 

% The bow and stern plane relations 

a=l; 

ZGB = ZG-ZB; 

Zd = (Zds + a*Zdb); 

Md = (Mds + a*Mdb); 

% A and B matrices were used to pass values to the other functions of dynamic system. 

A=[0 0 10 0 0 0;Bu xGxBZB 0 0 0;1 ZwZq 1 0 0 0; ZGMwMq 1 0 0 0;1 1 0 0 0 0 0; 

0 0 0 0 0 0 0;0 0 0 0 0 0 0]; 

B=[0 0 0;1 1 Zd;Ll L2 Md;0 0 0;0 0 0;0 0 0;0 0 0]; 

% Since the system is full state feedback, C is a diagonal matrix 

C=[l 0 0 0 0 0 0;0 1 0 0 0 0 0;0 0 1 0 0 0 0;0 0 0 1 0 0 0;0 0 0 0 1 0 0;0 0 0 0 0 1 0;0 0 0 0 0 0 1]; 

D=zeros(7,5); 

switch flag, 

% Dispatch the flag. The switch function controls the calls to S-function routines at each 

simulation stage 

% Initialization 

% sys is a generic return argument ; xO is the initial state values ; str is provided only for 

consistency % with the S-function API for block diagrams ; ts is a two column matrix containing 

the sample times % and offsets of states associated with the block 

caseO 
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[sys,xO,str,ts] = mdlInitializeSizes(A,B,C,D); 

% Calculate derivatives 

% t is the time ; x is the state vector ; u is the input vector 

case 1 

sys = mdlDerivatives(t,x,u,A,B,C,D); 

% Calculate outputs 

case 3 

sys = mdlOutputs(t,x,u,A,B,C,D); 

% Nothing is defined for calculation of next sample hit, updating discrete states and ending the 

% simulation tasks 

case {2,4,9} 

sys = D; 

otherwise 

error(['Unhandled flag -,num2str(flag)]); 

end 

% enddenemel 

%= 

% mdllnitializeSizes 

% Return the sizes, initial conditions, and sample times for the S-function 

% 

function [sys,xO,str,ts] = mdlInitializeSizes(A,B,C,D) 

% Call simsizes for a sizes structure, fill it in, and convert it to a sizes array 

sizes = simsizes; 

% Number of continuous states 

sizes.NumContStates = 7; 
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% Number of dicrete states 

sizes.NumDiscStates = 0; 

% Number of outputs 

sizes.NumOutputs   = 7; 

% Number of inputs 

sizes.Numlnputs    =5; 

% Flag for direct feedthrough 

sizes.DirFeedthrough= 0; 

% Number of sample times 

sizes.NumSampleTimes= 1; 

% The following statement passes the information in the sizes structure to sys, a vector that holds 

the % information for use by simulink 

sys = simsizes(sizes); 

% Initialize the initial conditions 

xO = [0 0 0 0 0 0 0]; 

% str is an empty matrix 

str=D; 

% Because the system is continuous, ts and its offset becomes 0. 

ts = [0 0]; 

% end mdllnitializeSizes 

%= 

% mdlDerivatives 

% Return the sizes, initial conditions, and sample times for the S-function 

% 
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function sys = mdlDerivatives(t,x,u,A,B,C,D) 

global rho Zqdot Zwdot Mqdot Mwdot Wo g Iyo L 

% Plane angle 

dr = u(3); 

% Current 

Ucz = u(5); 

% Velocity 

v = u(4); 

% State Variables 

theta = x(l); 

w = x(2); 

q = x(3); 

z = x(4); 

Xs = x(5); 

dl = x(6); 

d2 = x(7); 

Bu=A(2); ZG=A(4); xG=A(9); Zw=A(10); 

Mw=A(ll); xB=A(16); Zq=A(17); Mq=A(18); ZB=A(23); 

Zd=B(16); Md=B(17); 

L1=B(3); L2=B(10); 

% 

% This part will be used only when the system is simulated with thrusters. 

Zheave = 0;Mthrust = 0; 

if abs(u(l)) >0; 

Zheave = 2;Mthrust = 38.63; 

end; 

% 
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% Weight, mass , and moment of inertia 

W = Wo + dl+d2; 

m = W/g; 

Iy = Iyo + dl/g*(LlA2) + d2/g*(L2A2); 

% M Matrix 

Mo = [1 0 0 0 0 0 0;0 (m-Zwdot) (-m*xG-Zqdot) 0 0 0 0;0 (-m*xG-Mwdot) (Iy-Mqdot) 0 0 0 0; 

0 0 0 1 0 0 0;0 0 0 0 1 0 0;0 0 0 0 0 1 0;0 0 0 0 0 0 1]; 

% 

% This function calculates drag force and drag moment 

[Mdrag,Zdrag] = Mdrag(x); 

% 

% Equations of motion v represents forw.spd. since u is used for pump flowrate 

fi=q; 

f2 = (m+Zq)*v*q + m*ZG*(qA2) + Zw*v*w + (W-Bu)*cos(theta) +(vA2)*Zd*dr - Zdrag + 

Zheave; 

B = (Mq-m*xG)*v*q - m*ZG*w*q + Mw*v*w - (xG*Wo-xB*Bu)*cos(theta) ... 

- (ZG*W-ZB*Bu)*sin(theta) + (vA2)*Md*dr +(-Ll*dl  + L2*d2)*cos(theta)  - Mdrag- 

Mthrust*q; 

f4 = -v*sin(theta) + w*cos(theta); 

£5 = v*cos(theta) + w*sin(theta) + Ucz; 

f6=u(l); 

f7=u(2); 

sys = inv(Mo)*[fl;f2;f3;f4;f5;f6;f7]; 

% end mdlDerivatives 

%= 

% mdlOutputs 

% Return the derivatives for the continuous states 

%   — 

function sys = mdlOutputs(t,x,u,A,B,C,D) 
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sys = C*x + D*u; 

% end mdlOutputs 

%= 

%Mdrag 

% Makes calculations for drag terms in the equations of motion 

% = 

function [Mdrag,Zdrag] = Mdrag(x); 

global rho Zqdot Zwdot Mqdot Mwdot Wo g Iyo L 

CD = 1.2; 

% Beam and length definitions for trapaziodal rule 

xL=[0.0,-43.9/12.0,-39.2/12.0,-35.2/12.0,-31.2/12.0,-27.2/12.0,- 

0.0/12.0,0.0/12.0,10.0/12.0,26.8/12.0, 

32.0/12.0,37.8/12.0,40.8/12.0,42.3/12.0,43.3/12.0,43.7/12.0]; 

xl - xL + L/2; 

bm=[0.0,16.5/12.0,16.5/12.0,16.5/12.0,16.5/12.0,16.5/12.0,16.5/12.0,16.5/12.0,16.5/12.0,16.5/ 

12.0,15.5/12.0,12.4/12.0,9.5/12.0,7.0/12.0,4.0/12.0,0.0/12.0]; 

X2 = x(2); 

X3 = x(3); 

if X2 = 0, 

X2 = le-5; 

end; 

if X3 = 0, 

X3 = le-5; 

end; 

Zval = bm.*((X2-xL.*X3).A3)./(abs(X2-xL.*X3)); 

Mval = bm.*(((X2-xL.*X3).A3).*xL)./(abs(X2-xL.*X3)); 

67 



ZDragval=0; 

MDragval=0; 

% Trapaziodal integration 

for n=l:length(xL)-l, 

Zdragval=0.5*(Zval(n)+Zval(n+l))*(xL(n+l)-xL(n)); 

Mdragval=0.5*(MvaI(n)+Mval(n+l))*(xL(n+l)-xL(n)); 

ZDragval=ZDragval+ZdragvaI; 

MDragval=MDragval+Mdragval; 

end; 

Zdrag=(0.5)*rho*CD*ZDragval; 

Mdrag=(0.5)*rho*CD*MDragval; 

% end Mdrag 

% smcont 

% Makes calculations for flight controller using sliding mode techniques 

% 

function plane_ang = smcont(u) 

% State variable ; theta, w, q, z 

x = u(l:4); 

% Commanded flight depth 

zcom = u(5); 

% Forward speed 

v = 4; 

% Matrices of linear equations of motion 

Mo = [1 0 0 0;0 (m-Zwdot) (-m*xG-Zqdot) 0;0 (-m*xG-Mwdot) (Iy-Mqdot) 0;0 0 0 1]; 

Ao=[0 0 1 0;0 Zw*v (m+Zq)*v 0;-(ZG*W-ZB*Bu) Mw*v (Mq-m*xG)*v 0;-v 1 0 0]; 

Bo=[0;Zd*(vA2);Md*(vA2);0]; 

A = inv(Mo)*Ao; 
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B = inv(Mo)*Bo; 

% Pole placement 

pp = [-2,-2.1,-2.2,0]; 

kk = place(A,B,pp); 

Ac = A-B*kk; 

[mm,nn] = eig(Ac'); 

ss = mm(:,4); 

xcom = [0;0;0;zcom]; 

sig = ss'*(x-xcom); 

phi =0.1; 

Nmax = 2; 

eta = Nmax*0.4/inv((ss'*B)); 

% Control law 

plane_ang = -kk*x-Nmax*0.4*sign(inv((ssl*B)))*tanh((sig/phi)); 

% end smcont 

% 

%lq 

% Calculates gains for weight controller using LQR techniques 

% 

% Forward speed 

v = 0.1; 

% Matrices of linear equations of motion 

Mo = [1 0 0 0 0 0;0 (m-Zwdot) (-m*xG-Zqdot) 0 0 0;0 (-m*xG-Mwdot) (Iy-Mqdot) 0 0 0; 

0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 0 1]; 

Ao=[0,0,l,0,0,0;0,Zw*v,(m+Zq)*v,0,l,l;-(ZG*W-ZB*Bu),Mw*v,(Mq-m*xG)*v,0,-Ll,L2; 
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-v,l,0,0,0,0;0,0,0,0,0,0;0,0,0,0,0,0]; 

Bo=[0,0;0,0;0,0;0,0;l,0;0,l]; 

A = inv(Mo)*Ao; 

B = inv(Mo)*Bo; 

Q = eye(6); 

Q(l)=10000; 

Q(22)=100; 

R = 300000*eye(2); 

[k,s,m]=lqr(A,B,Q,R); 

k 

% end lqr 

%= 

% weightcont 

% Calculates the flow rates for each ballast pump 

% 

function wcur = weightcont(u) 

% state variables 

x=u(l:6); 

% forward speed 

v = u(7); 

% ground depth 

zgr=10; 

xc = [0 0 0 zgr 0 0]'; 

xerr = x - xc; 
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% Matrices for linear equations of motion 

Mo = [1 0 0 0 0 0;0 (m-Zwdot) (-m*xG-Zqdot) 0 0 0;0 (-m*xG-Mwdot) (Iy-Mqdot) 0 0 0; 

0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 0 1]; 

Ao = [0,0,l,0,0,0;0,Zw*v,(m+Zq)*v,0,l,l;-(ZG*W-ZB*Bu),Mw*v,(Mq-m*xG)*v50,-Ll,L2; 

-v,l,0,0,0,0;0,0,0,0,0,0;0,0,0,0,0,0]; 

Bo=[0,0;0,0;0,0;0,0;l,0;0,l]; 

A = inv(Mo)*Ao; 

B = inv(Mo)*Bo; 

% Checks if the grounding procedure started 

ifv>0.1; 

wcur= [0;0]; 

else 

% Gains found in lq function 

Kl = [0.0608    0.1263   -0.0526    0.0138    0.0754   0.0365]; 

K2 = [-0.0322   0.1294   0.0021    0.0120   0.0365    0.0613]; 

% Flow rate for pump-1 

wcur(l) = -Kl*xerr; 

% If there is no water in ballast tank-1 and flow rate for pump-1 is negative, then turns off the 

pump 

if(u(5)<=0&wcur(l)<0); 

wcur(l) = 0; 

end; 

% Flow rate for pump-2 

wcur(2) = -K2*xerr; 

% If there is no water in ballast tank-2 and flow rate for pump-2 is negative, then turns off the 

pump 
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if (u(6) <= 0 & wcur(2) < 0); 

wcur(2) = 0; 

end; 

wcur = [wcur(l);wcur(2)]; 

end; 

% end weightcont 

%= 

% speedcont 

% Controls the forward speed 

% 

function vcom = speedcont(u) 

% Current velocity 

vcur = u(l); 

% Current depth 

zcurrent = u(2); 

% Commanded depth of flight 

zcom = u(3); 

z = zcom - zcurrent; 

% Current longitudinal location 

xreal = u(5); 

% Commanded longitudinal location 

xcomm = u(6); 

% Bottom depth 

zgrnd = u(7); 

location = xcomm - xreal; 

% deceleration 

ace = 0.625; 

% Forward speed during the flight 

Vo = u(4); 
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% Time 

t = Vo/acc; 

xstop = Vo*t-0.5*acc*(tA2); 

zvert = zgrnd - zcom; 

tvert = zvert/0.11; 

xstop2 = 0.6*tvert + 9; 

% Distance needed to complete stop 

xstop 1 = xstop + xstop2; 

% Checks if the vehicle is in the commanded depth and reduces to speed 

if abs(z) < 0.05; 

if location < xstop 1; 

vcen = abs(u(l) - 0.1) ; 

ifvcen>0.1; 

vcom = vcen; 

else 

vcom = 0.1; 

end; 

else 

vcom = u(4); 

end; 

else 

vcom = u(4); 

end; 

% end speedcont 

%= 

% seccont 

% Keeps the vehicle's velocity at 0.1 ft/sec during grounding 

% 

function vsec = seccont(u) 

% Difference between bottom and current depth 
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grnd = u(4) - u(5); 

if(u(l)>0|u(3)>0); 

vsec = 0.1; 

elseifgmd>3; 

vsec = 0.1; 

eise 

vsec = u(2); 

end; 

% end seccont 

%r 

% planeangcont 

% Keeps the plane angles at 0 degree during grounding 

% 

function ang = planeangcont(u) 

ifu(l)>0.1; 

ang = u(2); 

else 

ang = 0; 

end; 

% end planeangcont 

% 

% grounddepth 

% Stops the simulation at the ground depth defined by the user 

% 

function grnd = grounddepth(u) 

% Bootom depth 

ground = u(l); 

% Current depth 

actdpth = u(2); 

if actdpth > ground; 
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grnd = ground; 

else 

grnd = actdpth; 

end; 

% end grounddepth 
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I ■yz 

= 435 lbs 

= 435 lbs 

= 94 in. 

= 24.25 in. 

= 14.75 in. 

= 42 lb-ft-sec2 

APPENDIX B 

The parameter values used to simulate the dynamic behavior of the NPS Phoenix are 

given in this appendix : 

A. PHYSICAL PARAMETERS 

W       Vehicle Weight 

B Vehicle Buoyancy 

L Characteristic Length 

L,        Bow Ballast Tank Offset from CG. 

U        Stern Ballast Tank Offset from CG. 

Moment of Inertia 

XG        x Coordinate ofC.G. From Body-Fixed Origin   =0.0 in 

xB        x Coordinate of C.B. From Body-Fixed Origin   =0.0 in 

zB        z Coordinate ofC.B. From Body-Fixed Origin   =0.0 in 

ZQ        Z Coordinate of CG. From Body-Fixed Origin   = 0.5 in 

B. CONTROL INPUTS 

8b Bow Plane Deflection 

8S Stern Plane Deflection 

fi Bow Ballast Pump Flow Rate 

f2 Stern Ballast Pump Flow Rate 

C. NON-DIMENSIONALIZED HYDRODYNAMIC COEFFICIENTS 

Z'     = -0.09340 Z\    = -0.00253 Z\     = -0.07013 

Z'     =-0.78440 

M'.    = -0.00625 

Z'5s    =-0.02110 

M'     = -0.00253 

ZI     =-0.02110 

M'q    =-0.01530 

M!„    =0.05122 M;     =-1.7664 Mt    = 1.3260 
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